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Molecular dynamics study of the point defects in bcc uranium
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Thermodynamic properties of bcc uranium with point defects are studied using ab initio molecular dynamics
(MD) simulations at 1100 K. The simulations were performed with canonical ensembles of U127M1, U128M1,
and U126M1�1 for M = �, He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, and Pu disposed on a bcc lattice lying within a
4 × 4 × 4 cubic supercell. This work provides formation energies of substitutional, self, and solute interstitial
atom defects as well as binding energies of M-� pair defects. This work demonstrates that our computational
scheme based on MD simulations gives reliable formation and binding energies of atomic defects in bcc uranium
compared to conventional density functional theory calculations. The equilibrium volume, bulk modulus, and
thermal expansion coefficient of pure bcc uranium obtained from our MD simulations compare very well with
corresponding experimental results. The vacancy formation energy is predicted to be 0.88 eV. The experimental
vacancy formation energy remains uncertain. Experimental study of the formation and binding energies of other
point defects as well as the bulk modulus and thermal expansion coefficients of uranium with these defects is also
not found in the literature. This work shows that point defects tend to decrease the bulk modulus and increase
the thermal expansion coefficient of bcc uranium. The solute formation energies of noble gas atoms show a
bearing on their size. A large solute (Xe) has a high formation energy, and vice versa. This size effect is not
quite evident for the chemically reactive solutes, namely, Sr, Zr, I, Cs, and Pu. Our MD simulations further show
that vacancies are the favorable point defects in bcc uranium rather than both vacancies and self interstitials as
predicted by earlier calculations. The formation energies of self interstitial atoms are found to be lower than those
of solute interstitial atoms, each calculated in six different basic interstitial dumbbell configurations. That is, bcc
U accommodates self interstitials more easily than decay or fission gas interstitials (He, Kr, and Xe). Further, He
atoms are found to have comparable formation energies in the substitutional and interstitial locations. The fission
product atoms Kr and Xe prefer to occupy vacant substitutional lattice sites rather than interstitial sites. Binding
energies of divacancy and solute-vacancy pairs (0.31 vs −0.69 eV for the Xe-� pair, for instance) from our MD
simulation show that nucleation and growth of fission gas bubbles are supported by a thermodynamic driving
force, whereas vacancies tend to stay apart. This is in agreement with literature reporting that bcc uranium softens
and swells mainly by agglomeration of noble gas bubbles.
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I. INTRODUCTION

UO2 is the most common fuel in nuclear power plants. UO2

has a high melting point and its performance under irradiation
has been very good. Fundamental limitations of UO2 such
as the low uranium density and poor thermal conductivity
have nevertheless driven the development of advanced fuels
such as UC, UN, and metallic alloys of uranium. Fast reac-
tor fuel elements made of metallic alloys of cubic uranium,
with enhanced dimensional stability over time, enable high
burn-up and breeding besides the possibility of concurrent
burning of radioactive minor actinides and fission products
[1–8]. In a nuclear reactor, the fuels experience the most
severe temperatures, irradiation damage, and chemical trans-
mutation environment. The irradiation damage in fuels can
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reach 1000 dpa, or about 10 times higher than the dose en-
countered by structural materials [9,10]. Accurate models of
properties of fuel material and their evolution as a function
of time in the reactor are therefore important for achieving
predictive fuel performance simulations. A mechanistic fuel
performance modeling framework based on microstructure
evolution is considered to be promising. The main role of
density functional theory (DFT) calculations in this fuel per-
formance multiscale modeling framework has been to study
the thermodynamic and kinetic properties of point defects in
the fuel [5].

Atomic defects profoundly influence the properties of
materials and impact their performance in applications.
Atomic defects reduces the thermal conductivity of nuclear
fuel. Atomic defects govern diffusion, which in turn influ-
ences recombination and agglomeration of vacancies and
interstitials in nuclear fuel and hence formation of voids and
interstitial loops which deteriorate mechanical performance.
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Further, in order to develop accurate models of fission gas
diffusion, it is fundamental to understand their interaction
with vacancies. It is thus important to be able to predict the
equilibrium concentration of point defects and their evolution.
The equilibrium concentration c of point defects is governed
by their formation energy E f and temperature T [11,12] as
c ∝ e−E f /kBT , where kB is the Boltzmann constant. Besides
this, the binding energies of solutes to vacancies determine
their diffusion kinetics [13–16]. Thus, the formation energies
of point defects and their binding energies are important to
characterize their influence on the properties of crystals.

Therefore calculation of the energetics of point defects has
been a common field of DFT studies. DFT is often good
enough to obtain sufficiently accurate results for the formation
and binding energies of point defects [17–19]. But if one
insists on calculation of 0 K properties of crystals that are
unstable at this temperature, then meaningful results cannot
be expected [5,20].

Body-centered cubic (bcc) uranium (known also as γ

uranium) is dynamically stabilized at high temperatures but
unstable below 1050 K [21–24]. Because of this, there are not
many DFT studies of properties of bcc uranium with atomic
defects. Beeler et al. have nevertheless used DFT to calculate
the energetics of point defects in bcc uranium [25,26]. They
obtained an unrealistic relaxed structure in their calculation
when all the structural degrees of freedom of the supercell
model were allowed to relax. To avoid the undesirable relaxed
structure, they used the selective dynamics scheme within
DFT technique in which the point defect and the surround-
ing nearby shells of atoms were allowed to relax while the
remaining atoms were frozen, referred to as the shell method
(sm) [25]. Using the sm at 0 K, they obtained the formation
energies of atomic defects, namely, a vacancy and solute or
impurity Zr, He, Kr, or Xe. But they stated that the sm is
approximate, with inherent errors for energy minimization
computation [25,26].

Moreover, simulation of the high-temperature phase should
account for the thermal effects. The molecular dynamics
(MD) method is robust in that it includes thermal effects
naturally and also allows calculations of the equation of state,
thermal expansion coefficient, thermal conductivity, diffusion
coefficient, etc. However, MD simulation of the properties
of bcc uranium is very scarce. Smirnov and Stegailov have
used classical MD simulation to calculate the formation free
energies of vacancies and interstitials in bcc uranium [27].
They showed that the self interstitials are the dominating
defects, unlike in other metals where they are vacancies. But
they concluded that ab initio MD simulation is required to
validate their results. On the other hand, ab initio MD sim-
ulation of point defects in uranium with a desirable system
size of 1000 atoms, each with 14 valence electrons, would
require extremely high computational power [27]. Neverthe-
less, Hood et al. have shown that ab initio MD simulation of
bcc uranium with a system of 128 atoms gives a reasonable
equation of state [28]. Therefore, to improve our understand-
ing of the basic properties of point defects in bcc uranium (a
high-temperature phase), we use ab initio MD simulations to
compute the formation and binding energies of an extended
set of point defects, namely, a vacancy, and solute elements,

FIG. 1. Atomic relaxation in bcc U with a vacancy (U127�1) ob-
tained from 0 K DFT calculations (VASP-PAW-PBE, 500-eV cutoff,
5 × 5 × 5 k mesh) allowing complete relaxation of all structural de-
grees of freedom (size, shape, and ionic positions). The small sphere
at the center of the supercell indicates the location of a vacancy. It
is evident that the atoms are displaced appreciably from their ideal
locations.

He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, and Pu. These elements
were chosen because they are either fission or decay products
or alloying additions in nuclear fuels. Although the amount
of Ne and Ar created by uranium fission is negligible, it is
useful to investigate the behavior of these species since they
are often used to probe the structure of materials through
ion implantation. In addition, they provide a link between
the properties of small solutes such as He and large solutes
like Xe [29,30].

The paper is organized as follows. After the introduction
in this section, the computational scheme is outlined briefly
in Sec. II. In the results section (Sec. III), we show that the
equilibrium volumes of bcc uranium with point defects and
their formation and binding energies obtained from our MD
simulations are more reliable. Section IV presents a summary
of the results.

II. COMPUTATIONAL METHOD

Bcc uranium is stabilized by temperature. Therefore,
simulations above the stabilization temperature are more
meaningful than DFT calculations at 0 K. In order to see
whether 0 K DFT works for bcc uranium, we calculated its
equilibrium structure without and with a vacancy modeled
using a bcc supercell with 128 lattice sites. The equilibrium
volumes of U127�1 and U128 were obtained to be 2597.28 and
2574.78 Å3, respectively. That is, V0(U127�1) > V0(U128).
Thus a vacancy causes expansion of bcc uranium lattice. It is
evident from Fig. 1 that atoms are displaced appreciably from
their ideal locations due to a vacancy. No atomic displace-
ments have been observed in defect-free U128. The vacancy
formation energy of −4.12 eV from these calculations indi-
cates that bcc uranium is unstable, which is in agreement with
its instability at low temperatures. This means that 0 K DFT
calculations of point defect properties in high-temperature bcc
uranium is not reliable.
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Nevertheless, if some artificial stability is imposed using
the sm, we may obtain results that may have some meaning
[25]. The focus of this work is, however, the reliable ab initio
calculation of the formation and binding energies of point
defects in bcc uranium. Therefore, we use ab initio molecular
dynamics simulations, besides the shell method, to improve
our understanding of the computational schemes and the basic
thermodynamic properties of bcc uranium with point defects.

The formation energy of an atomic defect is a measure of
the energy required to form the defect. The binding energy
between a pair of atomic defects is a measure of the strength
of the attractive or repulsive interaction between them. The
expression for the formation energy E f of a substitutional
defect M, which is, in this work, either free atoms or pure
elements, is given by [12,18]:

E f = E (UN−1M1) − N − 1

N
E (UN ) − 1

n
E (Mn) (1)

where E (UN−1M1) is the total energy of a bcc uranium super-
cell with N lattice sites containing (N − 1) U and a defect M
atom. E (UN ) is the total energy of a bcc uranium supercell
with N lattice sites. E (Mn) is the total energy of defect M.
Here, n is 1 for the free atom solutes and it is the number of
atoms in the unit cell for crystalline solutes. E (Mn) is 0 for
M a vacancy, denoted by �. Point defects were introduced
into the supercell model of bcc uranium by adding and/or
removing select atoms. An isolated vacancy was created by
removing a U atom at a given lattice site. Substitutional atom
defects were created by replacing a single U atom with a
solute M atom as in our previous work [18].

The interstitial sites are also potential locations for fuel and
fission gas atoms because the fission fragments and neutrons
move rapidly through the fuel, exchanging their energy to
the lattice atoms until they come to rest, creating collision
and displacement cascades, hence Frenkel pairs. In order to
investigate fission gas diffusion and release, the probability
of the fuel and fission gas atoms occupying different lattice
locations must be known. Therefore, in addition to the sub-
stitutional locations, we have also calculated the formation
energies of self and solute interstitials in bcc U considering
the six different basic interstitial locations depicted in Fig. 1
of Han et al. [31]. The self interstitial atom (sia) formation
energies are obtained from the following expression:

E f
sia = E (UN+1) − N + 1

N
E (UN ), (2)

where E (UN+1) and E (UN ) are the total energies of the sys-
tems with and without a self interstitial atom, respectively
[31]. The formation energies of other interstitial atoms (oia)
were calculated from the expression [32]

E f
oia = E (UN M1) − E (UN ) − E (M1), (3)

where E (UN M1) is the total energy of a supercell composed
of N U atoms and one interstitial solute atom M. E (M1)
is the total energy of a solute atom M. Solute interstitial
formation energies were calculated for the select elements
He, Kr, and Xe, as they are the important decay or fission
gas elements produced in fission fuels in significant amounts.
Self and solute interstitial atom configurations were created in
accordance with Han et al. [31]. That is, the mixed dumbbell

configurations were obtained by replacing one of the two
atoms of the pure dumbbell with a solute atom M.

The solute-vacancy (M-�) binding energy Eb is calculated
from the expression [18]

Eb = [E (UN−2M1�1) + E (UN )]

− [E (UN−1�1) + E (UN−1M1)]. (4)

Substitutional solute-vacancy (M-�) pairs were created by
removing an U atom at a given site and replacing an U atom
with a solute M atom at a nearest-neighbor site as in our earlier
work [18]. The binding energies of self or solute interstitial
atoms with vacancies are not considered here because these
point defect clusters become more complex, requiring dedi-
cated study.

The total energies required to calculate the formation and
binding energies of point defects were computed with a 4 ×
4 × 4 bcc supercell having 128 lattice sites, namely, U128,
U127M1, U126M1�1 with substitutional point defects M = �,
He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, and Pu. The 4 × 4 × 4 bcc
supercell has been found to be sufficient to obtain converged
point defect energies in bcc iron [18,33], hence we assume
it to be sufficient for bcc uranium. The total energy calcula-
tions were performed using the Vienna Ab initio Simulation
Package (VASP) [34,35]. For the electron-ion interaction, the
projector augmented wave (PAW) potentials [36,37] were
used for the elements considered in this work. For the ex-
change correlation energy functional, the generalized gradient
approximation of Perdew, Burke, and Ernzerhof (PBE) was
used [38]. Methfessel-Paxton order 1 smearing of the Fermi
surface was used, with a smearing width of 0.2 eV [39]. A
cutoff energy of 500 eV was used for the plane-wave ex-
pansion of the electron wave functions. A 5 × 5 × 5 k-point
mesh generated according to the Monkhorst-Pack scheme was
used to sample the Brillouin zone in all the 0 K total energy
calculations with the convergence criterion set to 10−7 eV.
As mentioned earlier, the sm freezes all the atoms other than
the atomic defects and their nearest and next-nearest shells of
atoms, besides freezing the shape and size of the supercell
[25]. In our work the shape and size of the supercell are
allowed to relax.

The MD simulations were performed with ensembles of
U128, U127M1, and U126M1�1 with substitutional point de-
fects M = �, He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, and Pu and
ensembles of U129, U128He1, U128Kr1, and U128Xe1, with self
and solute interstitial atom defects, disposed on a bcc lattice
lying within the 4 × 4 × 4 cubic supercell. The simulations
were performed in the canonical (NVT) ensemble with the
temperature controlled using an Andersen thermostat [40].
The idea is to couple the system to a heat bath by using
stochastic impulsive forces that act occasionally on randomly
selected particles. After stochastic collision, the chosen parti-
cle forgets its old velocity and picks its new velocity from a
Maxwell-Boltzmann distribution at the imposed temperature
[41]. These simulations were performed with the default cut-
off energy for the plane-wave basis set and with a single � k
point for sampling the Brillouin zone.

We note that a 4 × 4 × 4 bcc supercell with 128 lattice sites
was chosen for our MD simulations because the convergence
calculations by Hood et al. [28] on uranium supercells with
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TABLE I. Structure of the solute elements. Crystallographic data of the elements were taken from the SpringerMaterials online database
[48]. Lattice parameters a, b, c, α, β, and γ are given, respectively, in Å and degrees. The lattice constant a alone is given for Sr and Cs. For
Zr, a and c are listed. For I, a, b, and c are given.

Element Structure Lattice parameter

Experimental DFT

He Free atom
Ne Free atom
Ar Free atom
Kr Free atom
Xe Free atom
Sr FCC(225) 6.03 6.05
Zr HCP(194) 3.23, 5.15 3.24, 5.16
I Orthorhombic(64) 7.26, 4.80, 9.78 7.69, 4.56, 9.76
Cs BCC(229) 6.05 6.16
Pu Monoclinic(11) 6.17, 4.82, 10.99, 90, 101.80, 90 6.17, 4.82, 10.99, 90, 101.80, 90

32, 54, and 128 atoms have shown that the energies, pres-
sures, and structural properties, such as the radial distribution
function, were almost the same between 54- and 128-atom
supercells. In these MD simulations, the irreducible Brillouin
zones of 54- and 128-atom supercells were sampled with the
single � k point. Moreover, several ab initio MD studies can
be found in the literature where a 128-atom supercell with
single � k-point sampling has been sufficient to obtain reliable
results [42–45]. One of these studies [44] has also shown that
relaxation of the ionic shells around the vacancy in bcc Na
is negligible after the fifth shell. This means that the long-
wavelength acoustic vibrations are likely to be insensitive to
local variation of the lattice [46] due to point defects.

In VASP the electronic ground state is calculated exactly at
each MD step using an efficient iterative matrix diagonaliza-
tion and Pulay mixing schemes. We have also implemented
an extrapolation of the electronic charge density from one
step to the next, which is known to increase the efficiency of
MD simulations by a factor of 2 [47]. Each simulation was
performed for 16 ps in steps of 2 fs with the temperature
T fixed at 1100 K. For each system, the MD simulations
were performed at three different volumes. The total pressures
and average energies of each of the systems at the three vol-
umes (V1, V2, V3) were then fitted to obtain the equilibrium
volumes and corresponding energies of every system at the
given T and P = 0. These equilibrium energies and volumes
are then used in the calculation of the point defect formation
and binding energies as well as the bulk modulus and thermal
expansion coefficients. Each of these MD simulations was
performed with 120 processor cores on a high-performance
parallel computing cluster, and each simulation was run for
about 14 000 min.

Structural details of the reference phases used for solutes
[18] considered in this work are listed in Table I. For the
noble gas elements, the spin-polarized total energy of their
free atoms have been used as reference-state energies. These
free atom total energy calculations were performed by placing
a single atom at the center of a 12-Å cubic cell. For Sr, Zr,
I, Cs, and Pu, their respective elemental ground-state crystal
structures have been used as reference states. Their total ener-
gies have been obtained through high-precision calculations.
The total energy of the defect atoms, E (Mn), thus corresponds

to 0 K. E (Mn) should take its temperature dependence into ac-
count when Eq. (1) is used to compute the formation energies
from the MD total energies at a finite temperature. We assume
that the temperature dependence of E (Mn) is negligible in
this work [12]. Our calculated lattice parameters of Sr, Zr,
I, and Cs are found to be in good agreement with their re-
spective experimental values [48]. The total energy of Pu was
calculated at its experimental lattice parameters because the
PBE exchange correlation functional underestimates its unit
cell volume by about 11%. Considering spin-orbit coupling is
reported to resolve this discrepancy [49] but it is an involved
procedure and hence omitted.

III. RESULTS AND DISCUSSION

A. Equilibrium volumes and energetics of atomic defects from
the shell method

The results from the sm calculation of the formation ener-
gies of point defects and vacancy-solute binding energies in
bcc uranium together with the equilibrium volumes of their
respective supercell models are listed in Table II. Formation
energies given in parentheses are from Beeler et al. [25,26].
We see that our calculation reproduces these energies well.
The discrepancy in the formation energies of He, Kr, and Xe
is likely due to the enhanced cutoff energy and finer k-point
mesh used in our work. Further, our calculations allow the vol-
umes to relax, whereas Beeler et al. fix them at the equilibrium
volume of pure uranium [25,26]. Our work gives addition-
ally the formation energies of six more solute elements (Ne,
Ar, Sr, I, Cs, Pu) and vacancy-solute binding energies of all
nine elements considered in this work (He, Ne, Ar, Kr, Xe,
Sr, I, Cs, Pu).

We see further in Table II that the sm gives a volume of
U127�1, which is smaller by 0.4% compared to the volume
of pure U128. (The decrease in density N/V due to vacancy is
because of the decrease in N, not because of the increase in
V.) We have seen above, on the other hand, that the conven-
tional DFT calculations give an increased volume for U127�1

relative to a pure U128 supercell. Although this trend by the
sm is acceptable, we see later that it is not maintained in other
systems.
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TABLE II. Properties of bcc U128, U127�1, U127M1, and U126M1�1 (M = He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, Pu) obtained from DFT
calculations using the shell method. The volumes (V ) of the supercell models together with the formation energies E f and binding energies Eb

of atomic defects in bcc uranium are listed. Formation energies given in parentheses are from Beeler et al. [25,26].

System V (Å3) E f (eV) System V (Å3) Eb(eV)

U128 2574.78
U127�1 2564.43 1.33 (1.384) U126�1�1 2562.15 −0.90
U127He1 2568.95 3.08 (1.803) U126He1�1 2576.38 −3.07
U127Ne1 2583.93 4.06 U126Ne1�1 2581.97 −3.24
U127Ar1 2616.48 5.10 U126Ar1�1 2584.55 −2.99
U127Kr1 2617.69 5.22 (5.926) U126Kr1�1 2598.09 −2.41
U127Xe1 2618.17 5.20 (5.549) U126Xe1�1 2599.27 −2.43
U127Sr1 2621.05 2.70 U126Sr1�1 2603.58 −2.64
U127Zr1 2578.25 0.40 (0.394) U126Zr1�1 2581.97 −2.94
U127I1 2607.53 1.32 U126I1�1 2584.47 −3.62
U127Cs1 2622.26 4.47 U126Cs1�1 2603.39 −2.44
U127Pu1 2572.42 3.92 U126Pu1�1 2581.59 −2.91

Comparison of the equilibrium volumes of U127M1 and
U126M1�1 for solute M in Table II shows that they have a
qualitative correspondence to the atomic radii of M, which
are 1.08, 1.58, 1.88, 2.00, 2.17, 2.15, 1.60, 2.16, 2.73, and
1.64 Å, respectively, for He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, and
Pu. The atomic radius of He was taken from Zhang and Xu
[50]. Atomic radii of other elements were taken from Kittel
[51]. Atomic radii of Sr, Zr, Cs, and Pu corresponds to their
ions in 12-coordinated metals. Other atomic radii are of the
inert gas configuration. We would like to note here that the
atomic radius is fruitful in predicting interatomic spacing but
it is not rigid [51]. Comparison of the equilibrium volumes
of U127M1 with those of U126M1�1 shows that the volumes
of U126M1�1 are reduced relative to those of U127M1 for M =
Ne, Ar, Kr, Xe, Sr, I, and Cs but increased for M = He, Zr, and
Pu. We relate this increase in volumes to the low-temperature
mechanical instability of bcc U that caused its expansion with
the introduction of a vacancy discussed previously. Thus the
sm is not quite reliable, hence further discussion of the results
is omitted. Therefore, the sm calculations of self and solute
interstitials are also omitted.

B. Equilibrium volumes and energetics of atomic defects from
ab initio molecular dynamics simulations

The results from MD simulations are described here. The
MD simulations have been used here to calculate the ther-
modynamic properties of bcc uranium with point defects.
Therefore, we have to ensure that the supercell models of
uranium systems remain in the desired state during the sim-
ulations. The position autocorrelations becoming 0 and mean
square displacements (MSDs) becoming nearly constant sug-
gest that the systems remain in the same solid-state structure
during the simulation [52,53]. The position autocorrelation
(PAC) for a chosen atom, i, in a bcc crystal is given by pi(t ) =
〈(ri(t + t0) − R0

i )(ri(t0) − R0
i )〉, where ri is the time-varying

position of the atom and R0
i is the position of that atom’s

lattice site in the perfect bcc structure. The angular brackets
denote the thermal average, which in practice is evaluated
as an average over time origins, t0, and atoms i. For long
times t , vibrational displacements become uncorrelated, so

that pi(t ) = 〈(ri(t + t0) − R0
i )〉〈(ri(t0) − R0

i )〉 → 〈ri − R0
i 〉2,

and if all atoms vibrate about bcc lattice sites, 〈ri − R0
i 〉 = 0,

so that pi(t ) → 0 as t → ∞. The mean square displacement
is defined by �r2(t ) = 1

N

∑

i
[ri(t ) − ri(0)]2. It is the mean

squared distance over which the labeled atoms have moved in
a time interval t . The MSD is used here mainly to distinguish
between diffusive and nondiffusive behavior, as we are using
a thermostat.

In order to establish our computational scheme based on
canonical ensemble MD simulations, we first performed sim-
ulations for bcc Zr and W, which are less complex metals
than U. Figs. 2 and 3 show the average position autocorre-
lation PAC functions and MSDs in Zr128, Zr127�1, W128, and

FIG. 2. Average position autocorrelation (PAC) functions and
mean square displacements (MSDs) in bcc Zr128 and Zr127�1. MD
simulations were performed at 1400 K at three different volumes,
V 1, V 2, and V 3, such that V 1 < V 2 < V 3.
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FIG. 3. Average position autocorrelation (PAC) functions and
mean square displacements (MSDs) in bcc W128 and W127�1. MD
simulations were performed at 1800 K at three different volumes,
V 1, V 2, and V 3, such that V 1 < V 2 < V 3.

W127�1, respectively. It is evident that the PAC and MSD of
pure Zr and W and of W with a vacancy become, respectively,
0 and constant, establishing that they remain in the same
structure during the simulations (like textbook examples). The
PAC and MSD of bcc Zr with a vacancy (Zr127�1) become,
respectively, 0 and constant at a lower rate than those of
pure Zr. This indicates that Zr127�1 also essentially retains
its structure during the simulations.

The equilibrium energies of each of these systems at tem-
perature T were then obtained from their average energies
at the three different volumes (V1, V2, V3) through fitting.
In all our MD simulations, thermalization has been reached
within about 650 fs. This initial 650 fs of the simulations
was omitted when the average energies of the systems were
calculated. That is, for every system, we have a set of three
average energies, E1, E2, E3, with respective volumes, V1,
V2, V3, and pressures, P1, P2, P3. The equilibrium volume of
the system, V0, corresponding to P = 0, is obtained by fitting
the V (P) data to a linear polynomial. The equilibrium energy
of the system at P = 0 is then calculated by fitting the E (V )
data to a quadratic polynomial with equilibrium volume V0

from the V (P) fitting. These energies were used in the calcu-
lations of the formation and binding energies of atomic defects
[Eqs. (1)–(4)]. We have also obtained the bulk moduli, B0, and
volume thermal expansion coefficients, α, respectively, from
B0 = −V dP

dV and α = 1
B0T [ dE

dV + P] at P = 0, which are part
of the above V (P) and E (V ) fitting schemes.

The results of our simulations for Zr and W are listed in
Table III. The lattice parameter of pure bcc Zr (3.625 Å)
derived from our equilibrium volume at 1400 K is in very
good agreement with the experimental value (3.627 Å) at
973 K [54]. Our bulk modulus of 83 GPa appears to deviate
from the experimental value of 66 ± 3 GPa [54] reported

TABLE III. Properties of bcc Zr128, Zr127�1, W128, and W127�1

obtained from our ab initio molecular dynamics simulation. The
equilibrium volumes (P = 0) of the simulation supercells, V0, to-
gether with the vacancy formation energies, E f , are given. Estimates
of the bulk moduli, B0, and thermal volume expansion coefficients,
α, of these systems are also listed.

System V0 (Å3) B0 (GPa) 10−5α (1/K) E f (eV)

Zr128 3048.46 83 3.02
Zr127�1 3031.58 82 3.31 1.05
W128 2115.97 294 1.42
W127�1 2110.29 291 1.48 2.90

by Zhao et al. But they stated that more P-V-T data are
needed to better constrain their equation of state parameters.
On the other hand, our bulk modulus is in good agreement
with the 87 GPa obtained from elastic constants at 1482 K
reported by Heiming et al. [55]. They obtained the elastic
constants from the force constants derived from Born–von
Karman fits to the phonon dispersion curves from inelas-
tic neutron scattering measurements. Our thermal expansion
coefficient of 3.02×10−5/K is also in good agreement with
the experimental value of 2.91 × 10−5/K [56]. The vacancy
formation energy of 1.05 eV determined from our simula-
tion is smaller than the 1.75 eV estimated from specific heat
measurements [57]. But the latter value is considered to be
higher than normal since it leads to a vacancy concentration
which is a factor of 10 larger than those obtained with the
aid of the differential dialatometry technique [57]. Further-
more, the vacancy formation energies show variation with
temperature [12].

For pure W, our lattice constant of 3.20 Å derived from
its equilibrium volume at 1800 K is in very good agreement
with the literature value of 3.18 Å[58]. The bulk modulus
of 294 GPa also is in very good agreement with the litera-
ture [58] (305 GPa). For the vacancy formation energy, our
simulation gives 2.90 eV, which is in reasonable agreement
with the literature [32,58,59] (around 3.1 eV). The differences
are likely because our results are for 1800 K, whereas the
literature results correspond to 0 K. The thermal expansion
coefficient of W predicted by our computational scheme is in
good agreement with the literature [60–63]. These results thus
lend credibility to our computational scheme.

1. Substitutional and interstitial defects in bcc uranium

We now turn to our results of the MD simulation of bcc U
with point defects. Figs. 4 and 5 show the PACs and MSDs of
U128, U127�1, and U127M1 (M = He, Ne, Ar, Kr, Xe, Sr, Zr, I,
Cs, Pu). The PAC and MSD of systems with self and solute
interstitials, namely, U129, U128He1, U128Kr1, and U128Xe1

are collected in the Supplemental Material (Figs. S1 to S8)
[64]. These plots show that the PACs generally decrease to 0
with time. The MSDs tend to become constant with increasing
time and are generally smaller than half the minimum bond
lengths of these systems (1.52 Åfor crowdion). This indicates
that these systems remain in the same structure of uranium
during the simulations. The thermodynamic properties of bcc
uranium with point defects were then calculated in the same
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FIG. 4. Average position autocorrelation (PAC) functions in
U127M1 with M = �, He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, Pu, U. MD
simulations were performed at three different volumes, V 1, V 2, and
V 3, such that V 1 < V 2 < V 3.

manner as described earlier for Zr and W and the results are
listed in Tables IV and V.

The equilibrium lattice constant of bcc uranium, 3.50 Å,
derived from the equilibrium volume of a pure bcc uranium
supercell with 128 atoms, 2731.43 Å3, in Table IV, obtained
from our MD simulation at 1100 K, is in very good agreement
with the experimental lattice constant of 3.52 Å at 1078 K
[7,65,66]. We see further that the volume of U127�1, that
is, the volume of bcc uranium with a vacancy, is reduced
compared to that of pure bcc uranium. This is remarkable
because we have seen that the 0 K DFT calculation gives an
equilibrium volume of U127�1, which is higher than that of
the pure U128 supercell by about 1%. This is an important
improvement because accurate calculation of the equilibrium
volumes is basic for the reliability of the technique for the
other properties calculated. The equilibrium volumes of other
systems show a correspondence to the size of the solute or
impurity atoms M as stated earlier.

Table IV further shows that our MD simulation predicts
0.88 eV for the vacancy formation energy of bcc uranium.
Matter et al. have investigated vacancy formation and phase
transformations in uranium by positron annihilation. They
have reported a lower limit of about 1 eV for the monova-
cancy formation energy of bcc uranium through the trapping
model [67]. Thus the vacancy formation energy of 0.88 eV

FIG. 5. Mean square displacements (MSDs) in U127M1 with
M = �, He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, Pu, U. MD simulations
were performed at three different volumes, V 1, V 2, and V 3, such
that V 1 < V 2 < V 3.

TABLE IV. Properties of U128, U127�1, and U127M1 (M = He,
Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, Pu) obtained from ab initio molecular
dynamics simulation at 1100 K. The equilibrium volumes (P = 0) of
the simulation supercells, V0, together with the formation energies,
E f , of atomic defects in bcc uranium are given. Estimates of the bulk
moduli, B0, and thermal volume expansion coefficients, α, of these
systems are also listed.

System V0 (Å3) B0 (GPa) 10−5α (1/K) E f (eV)

U128 2731.43 109 2.21
U127�1 2715.71 102 3.24 0.88
U127He1 2732.00 103 3.44 1.70
U127Ne1 2735.75 101 3.57 2.54
U127Ar1 2740.41 101 3.96 5.38
U127Kr1 2747.28 101 3.15 5.58
U127Xe1 2753.25 102 3.72 6.46
U127Sr1 2753.08 97 4.77 2.10
U127Zr1 2738.08 104 3.22 0.91
U127I1 2745.50 101 4.12 2.03
U127Cs1 2755.23 98 3.33 5.24
U127Pu1 2730.82 102 4.34 0.24
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from our MD simulation, compared to 1.33 eV from the sm
calculation (Table II), is apparently not in better agreement
with the positron spectroscopy estimate (1 eV). But Mat-
ter et al. have pointed out that their positron annihilation
coincident count rate experiment was not accurate for ura-
nium. Later Kogel et al. have studied vacancy formation and
phase transformations in uranium through positron lifetime
and Doppler broadening measurements [68]. They stated that
their positron lifetime measurements enable more accurate
estimates of positrons trapped at vacancies than the coincident
count rate employed by Matter et al. [67]. They reported that
the average formation enthalpy of vacancy in bcc uranium is
of the order of 0.3 eV. This is quite different from the Matter
et al. value (1 eV).

Recently, Lund et al. have investigated the effect of im-
purities on the vacancy formation enthalpy in uranium using
DFT calculations and Doppler broadening of positron anni-
hilation radiation [69]. They obtained 1.6 ± 0.2 eV for the
vacancy formation energy. They reported that the lower val-
ues obtained in previous measurements were due to oxygen
impurities contained in the samples. But it is not clear whether
their experimental result is for bcc or orthorhombic uranium
because they compare it with the DFT result obtained for
the orthorhombic phase. (Our vacancy formation energy of
orthorhombic uranium, 1.84 eV, from the conventional DFT
total energy calculation is in good agreement with their DFT
result.) On the other hand, earlier experimental studies [67,68]
were for the bcc phase. This means that the measured vacancy
formation energy of bcc uranium remains uncertain. In view
of this, and in view of the acceptable performance of our
computational scheme for Zr and W, we think that the 0.88 eV
for the vacancy formation energy from our MD simulation is
more reliable.

For solute Zr, our molecular dynamics simulation gives
a formation energy of 0.91 eV, which is higher than that
obtained from the sm (Table II). The formation energy of
Zr solute from our MD simulation is more reliable because
the equilibrium volume of U128 and hence that of U127Zr1

from MD are in better agreement with experiment than those
from the sm. For the formation energies of other solutes, nei-
ther first-principles MD nor experimental results are available
in the literature. But we note that the equilibrium volumes
of U127M1 given in Tables II and IV are about the respec-
tive equilibrium volumes of U128, which are 2574.78 and
2731.43 Å3, respectively. The lower volume corresponds to
room temperature, where bcc uranium is unstable. Therefore,
the formation energies of M in a bcc uranium matrix obtained
from the sm is not reliable. The formation energy of solute Pu
in bcc U (0.24 eV) is the lowest among the solutes considered
here. Note that this corresponds to the total energy of Pu at
its experimental lattice constants. DFT relaxation typically
lowers the total energy of a crystal by a few electron volts.
This means that the formation energy of Pu in bcc U will
increase by about 0.1 eV. That is, the formation energy of
Pu solute in bcc U will increase to 0.34 eV. Even then the
formation energy of solute Pu is lowest. This is reasonable
because Pu is readily soluble in bcc U and the addition of Pu
(melting point, 913 K) to uranium (melting point, 1408 K)
causes the melting point of uranium alloys to decrease
substantially.

FIG. 6. Self and solute interstitial formation energies in bcc U as
a function of the interstitial configuration. The x-axis labels Crowd,
Oct, and Tet correspond, respectively, to crowdion, octahedral, and
tetrahedral dumbbell configurations.

Table V lists the set of formation energies of self and solute
interstitials (E sia

f and Eoia
f ) considered in this work. The equi-

librium volumes listed here show similarity to the respective
volumes of uranium without and with substitutional solutes
listed in Table IV. That is, the equilibrium volumes show a
correspondence to the size of the solute or impurity atoms M.
The equilibrium volumes in Table V are enhanced relative
to those in Table IV, reflecting the increase in the number
of atoms. Figure 6 illustrates the self and solute interstitial
formation energies in bcc uranium for the six basic intersti-
tial configurations. It is evident that the self interstitial atom
formation energies are lower than those of solute interstitial
atoms. That is, bcc U accommodates self interstitials more
easily than decay or fission gas interstitials (He, Kr, Xe).

The minimum self interstitial formation energy of 1.07 eV
(〈111〉 configuration) is higher than the vacancy formation
energy of 0.88 eV (Table IV). This indicates that vacancies are
favorable point defects in bcc uranium rather than both vacan-
cies and self interstitials, in comparable amounts, as reported
in earlier works [25–27]. This variance with the literature is
because they are based on either the sm or the embedded
atom method potentials constructed using results of the shell
method, which has inherent limitations [25,26].

In Tables IV and V, it is further evident that He atoms
have comparable formation energies in substitutional and
interstitial locations. The fission product atoms Kr and Xe
prefer to occupy vacant substitutional lattice sites rather than
interstitial sites.

The formation energies of noble gas atoms in Table IV
show that they bear a relation to the size of solute atoms.
He is a relatively small atom. The solute formation energy
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TABLE V. Properties of bcc uranium with self and solute interstitials obtained from ab initio molecular dynamics simulations at 1100 K.
The equilibrium volumes (P = 0) of the simulation supercells, V0, together with the formation energies of interstitial defects (E f

sia or E f
oia) in

six different configurations in bcc uranium are given. Estimates of the bulk moduli, B0, and thermal volume expansion coefficients, α, of these
systems are also listed.

System Configuration V0 (Å3) B0 (GPa) 10−5α (1/K) E f
sia, E f

oia (eV)

U129 〈100〉 2760.07 107 4.68 1.32
〈110〉 2757.57 109 2.80 1.11
〈111〉 2757.88 109 4.31 1.07

Crowdion 2757.40 109 4.46 1.21
Octahedral 2758.40 109 3.02 1.40
Tetrahedral 2757.98 111 2.93 1.30

U128He1 〈100〉 2751.73 105 2.87 2.02
〈110〉 2752.61 103 4.66 1.99
〈111〉 2751.03 107 3.24 1.77

Crowdion 2752.07 105 3.25 2.29
Octahedral 2751.11 105 2.96 2.09
Tetrahedral 2751.19 104 3.88 1.83

U128Kr1 〈100〉 2770.92 109 2.85 6.80
〈110〉 2770.52 107 2.27 6.85
〈111〉 2770.62 108 3.63 6.81

Crowdion 2770.58 108 5.47 6.40
Octahedral 2769.50 109 4.12 6.48
Tetrahedral 2768.62 111 2.31 6.29

U128Xe1 〈100〉 2775.21 109 3.16 6.98
〈110〉 2775.20 109 6.80 7.01
〈111〉 2772.80 113 2.48 6.52

Crowdion 2774.61 111 5.22 6.62
Octahedral 2773.89 113 3.48 6.64
Tetrahedral 2774.91 109 3.44 6.97

of He is low. Xe is relatively large. It has a high formation
energy. This size effect of noble gas elements on their for-
mation energies is also evident from the interstitial formation
energies given in Table V and Fig. 6. Our MD simulation of
interstitial Xe shows that it has the lowest formation energy,
6.52 eV, in the 〈111〉 configuration. This is comparable to its
substitutional formation energy of 6.46 eV. These are quite
different compared to the corresponding energies of 10.08
and 5.54 eV reported by Beeler et al. using the sm [26]. Our
work thus predicts that the substitutional and 〈111〉 interstitial
Xe defects form with comparable probabilities. Note that the
volumes of Xe in these configurations are comparable.

The apparent size effect on the point defect formation
energies of noble gas elements is not quite evident for other
solutes, namely, Sr, Zr, I, Cs, and Pu. Since these elements
are chemically reactive, their formation energies in uranium
appear to be influenced by both size and chemical effects.

Table IV also lists the bulk moduli, B0, and volume thermal
expansion coefficients, α. The bulk modulus of 109 GPa for
pure uranium is in good agreement with the experimental
value of 113 GPa [20]. We see further that the bulk moduli
of uranium with point defects tend to be reduced compared
to that of pure uranium. These reductions in bulk moduli are
similar to the reduction of the bulk moduli of bcc W due
to inert gas atom defects [59]. The bulk moduli of uranium
with self and solute interstitials, given in Table V, are of the
same order as those of uranium with substitutional solutes
or impurities given in Table IV. It is difficult to distinguish

between substitutional and interstitial solutes from their effect
on the bulk modulus of uranium.

The thermal expansion coefficient is one of the important
properties in fuel pin design and performance modeling. For
instance, an increase in fuel volume and associated decrease in
density due to thermal expansion can cause enhanced neutron
leakage and hence negative feedback [70]. Therefore, it is
important to understand the influence of point defects on the
thermal expansion coefficient. We see in Table IV that the
volume thermal expansion coefficient of pure bcc uranium
obtained from our MD simulation (2.21 × 10−5/K) is in very
good agreement with the experimental value (2.46 × 10−5/K)
of Yoo et al. [20]. This allows us to assume that our calculated
thermal expansion coefficients of other systems are useful es-
timates. It is evident that the thermal expansion coefficients of
uranium with point defects (Tables IV and V) are generally in-
creased substantially relative to that of pure bcc uranium. Our
supercell model corresponds to point defect concentrations of
less than 1.6%. The thermal expansion coefficient of bcc ura-
nium with this point defect concentration is not found in the
literature. Dilatometry curves obtained for uranium alloy with
2 to 10 wt% Zr show that the thermal expansion increases with
Zr addition [71], which is in agreement with our increased
thermal expansion coefficient of U127Zr1 relative to that of
pure bcc uranium.

A theory of thermal expansion of crystals containing sub-
stitutional point defects exists in the literature [72]. But its
validation is not common. This theory split atomic displace-
ments into a sum of dynamic displacements, a homogeneous
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TABLE VI. Properties of U126M1�1 (M = �, He, Ne, Ar, Kr,
Xe, Sr, Zr, I, Cs, Pu) obtained from ab initio molecular dynam-
ics simulation at 1100 K. The equilibrium volumes (P = 0) of the
simulation supercells, V0, together with the binding energies, Eb,
of atomic defects in bcc uranium are given. Estimates of the bulk
moduli, B0, and thermal volume expansion coefficients, α, of these
systems are also listed.

System V0 (Å3) B0 (GPa) 10−5α (1/K) Eb (eV)

U126�1�1 2702.23 104 3.65 +0.31
U126He1�1 2713.66 99 4.20 −0.37
U126Ne1�1 2719.66 97 3.81 −0.22
U126Ar1�1 2721.90 100 4.12 −0.18
U126Kr1�1 2729.94 104 2.89 −0.36
U126Xe1�1 2735.06 103 1.84 −0.69
U126Sr1�1 2738.23 93 4.75 −0.52
U126Zr1�1 2719.90 103 3.83 −0.23
U126I1�1 2729.04 103 2.65 −0.85
U126Cs1�1 2738.95 102 2.65 −0.64
U126Pu1�1 2712.21 100 4.68 −0.46

strain, and a local strain near the defects. Figure 5 and
Figs. S2, S4, S6, and S8 in the Supplemental Material
[64] suggest that the average mean square displacements in
U127M1 and U128M1 are greater than that in U128. This allows
us to think that the solute elements make uranium matrix less
stiff leading to the enhanced thermal expansion coefficients of
U127M1 and U128M1 in Tables IV and V. This interpretation is,
however, not quite true for some of the substitutional solutes
such as Ne, Ar, and Sr. Smirnov and Stegailov [27], through
comparison of the formation energies of vacancy and self
interstitial and the thermal expansion coefficients of pure Mo
and U crystals, hypothesized that a defect-based mechanism
of thermal expansion should be significant in bcc uranium.
Our thermal expansion coefficients in Tables IV and V appear
to support this hypothesis.

2. Solute-vacancy defect pairs in bcc uranium

As discussed in Sec. I, the binding energies of solutes to
vacancies determine their diffusion kinetics. Therefore, we
have also performed MD simulations of U126M1�1 (M = �,
He, Ne, Ar, Kr, Xe, Sr, Zr, I, Cs, Pu) to compute the M-�
binding energies. Plots of the position auto correlations and
the mean square displacements in U126M1�1 from our MD
simulations are provided in the Supplemental Material (Figs.
S9 and S10) [64]. These plots show that the PACs decrease to
0. This decrease is somewhat slow in U126�1�1. The MSDs
become constant with time and are smaller than half the
nearest-neighbor bond lengths of these systems (2.96 Å). This
behavior of PACs and MSDs suggests that the systems remain
in the same bcc structure of uranium during the simulations.

The equilibrium energies of each of these systems were
then obtained in the same manner as described earlier. These
energies were then used in the calculations of the M-� binding
energies. Table VI lists these binding energies Eb together
with the equilibrium volumes of the simulation supercells.
Estimates of the bulk moduli and thermal volume expansion
coefficients of these systems are also listed.

The equilibrium volumes of U126M1�1 are reduced relative
to the respective equilibrium volumes of U127M1 (Table IV)
for all M’s. The reductions in volume vary from 14 to 19
Å3, which is comparable to the atomic volume of uranium
(20.84 Å3). The corresponding volumes from the sm (Table II)
vary from −9 to 36 Å3, which deviate significantly from the
atomic volume of uranium. Thus, the equilibrium volumes and
hence formation and binding energies of point defects in bcc
uranium obtained from our molecular dynamics simulation
are more reliable than those from the shell method. Further,
the bulk moduli of U126M1�1 tend to be reduced relative to
those of respective U127M1. For instance, the B0 values of
U127�1, U127He1, and U126He1�1 are, respectively, 102, 103,
and 99 GPa. That is, the B0 of U126He1�1 is lower than those
of U127�1 and U127He1. This appears reasonable. But there
are exceptions. For instance, the B0 values of U127Cs1 and
U126Cs1�1 (98 and 102 GPa) with reference to that of U127�1

do not maintain the same trend, though their PAC and MSD
are quite fine. The above trend is also not maintained between
U127�1 and U126�1�1. Thus the B0’s are to be considered as
representative values. Quantitative comparison would require
more accurate simulations with more P-V points, which are
quite difficult due to limitation of computer resources.

The M-� binding energies from MD simulations given in
Table VI are generally less exothermic (−0.18 to −0.69 eV)
compared to those from the sm (−2.41 to −3.62 eV in
Table II). This is acceptable because such binding energies
in bcc iron [18] are generally higher than −1.5 eV and be-
cause our binding energies are similar to the He-� binding
in tungsten [59]. Our divacancy binding energy of 0.31 eV is
similar to the 0.30 eV in iron [73]. Our solute-vacancy and
divacancy binding energies thus suggest that nucleation and
growth of fission gas bubbles are supported by a thermody-
namic driving force which is absent for void formation from
joining of vacancies. This is in agreement with Li et al., who
have reported that, at high temperatures, bcc uranium softens
and swells mainly by agglomeration of noble gas bubbles [74].

3. Error estimation

Due to the scarcity of literature on the properties of bcc
uranium with point defects, a full comparison of our results
is not possible. A brief consideration of the various sources
of errors in our MD simulation of point defect energies is
therefore given here to estimate the accuracy of our results.
Freysoldt et al. [12] have provided a broad review of the
various sources of error in the first-principles calculations of
point defects in solids. We chose the PAW method with the
PBE exchange correlation functional, which is more accurate
than other pseudopotentials and exchange correlation func-
tionals [12]. A 4 × 4 × 4 bcc supercell with 128 lattice sites
has been reported to be sufficient to obtain converged results
from MD simulation of uranium for the equation of state,
the Gruneisen parameter and specific heat, and the radial and
bond-angle distribution functions [28]. Further, Puska et al.
have investigated the convergence of supercell calculations for
point defects in semiconductors [75]. This work shows that a
cubic supercell of 128 atoms with � k-point Brillouin zone
sampling gives the converged point defect formation energy.
They have also suggested that supercell convergence can be
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achieved with a relatively smaller cell for point defects in
metals. Moreover, the defect formation energies are defined
as an energy difference between supercell calculations with
and without a defect [Eqs. (1)–(4)]. The energy difference
between two similar systems is much more rapidly conver-
gent due to the cancellation of systematic errors [12,76]. This
convergence is often seen in the formation energies of point
defects. Since a consistent supercell size and k-point sam-
pling have been used in the present work, we assume that
the errors due to supercell size and k-mesh convergence are
negligible.

We turn next to the error bar due to the fluctuation of the
energy of the systems during MD simulations. After ther-
malization, the energies of all systems were fluctuating with
a standard deviation of about 0.11% from the mean. These
fluctuations lead to a maximum error bar of ±0.12 eV in
the formation and binding energies reported in this work. It
is worthwhile to consider the influence of this error on the
point defect energies. This error is smaller than the differ-
ence in the formation energies of Kr and Xe, for instance
(Table IV), whereas it is larger than the difference in the
formation energies of the vacancy and the solute Zr. Simi-
larly, the error is smaller than the difference in the formation
energies of different types of interstitials, namely, between
pure and mixed dumbbells (Table V), whereas it is larger
than the difference in the formation energies between different
configurations of the dumbbells. This leads to an ambiguity in
identifying, for instance, the most favored dumbbell config-
uration or the favored point defect between the vacancy and
Zr. These scenarios, however, cannot be attributed entirely
to errors in simulations because the point defect formation
energies presented here pertain to a given temperature, and
they are reported to have different temperature dependences
[12,77,78].

Lucas and Schaublin have investigated vacancies and self
interstitials in bcc iron [77]. Their work shows that (Fig. 3
in [77]) the free energy of formation of the 〈110〉 dumbbell is
almost constant in the temperature range 0 to 1000 K, whereas
the free energies of formation of the 〈111〉 dumbbell and the
vacancy vary considerably with the temperature. With respect
to the 〈110〉 dumbbell, the temperature-dependent variations
of the 〈111〉 dumbbell and vacancy are opposite. This means
that point defect formation energies show significantly dif-
ferent temperature dependences, and thus the error bars are
not fixed. Moreover, Kobelev and Khonik have shown that
the nonlinear behavior of the Gibbs energy of formation for
point defects is due to the nonlinear temperature dependence
of their formation enthalpy [78] rather than formation entropy
[12]. This dependence is argued to originate from the temper-
ature dependence of the shear modulus and related shear field
created by point defects.

A brief account of the formation entropy is also given.
Although most defect studies are based on the formation en-
ergy E f , for the calculation of equilibrium concentrations of
point defects, their free energies of formation are more per-
tinent [12]. Thermodynamic integration technique combined
with MD simulations can be used to compute the free energy
of formation [43–45]. This requires heavy computational re-
sources. We have therefore used MD simulations to obtain the
equilibrium energies at a given temperature rather than free

energies. That is, our formation energies omit the entropy of
point defect formation.

The vibrational contributions to the free formation energy
of point defects (vacancy, Cu, Y, Ti, Cr, Mn, Ni, V, Mo, Si,
Al, Co, O) in bcc iron have been reported by Murali et al.
recently. This work shows that the vibrational entropy of
point defect formation ranges from 0.05 to 3.0 kB for Co and
vacancy defects, respectively (except vanadium, which has a
negative entropy of formation) [33,79]. This means that the
vibrational contribution would lower the formation energy of
point defects in bcc iron by up to 0.25 eV at 1000 K. The
formation entropy of dumbbells in Na is suggested to be about
7 kB [44]. Further, Nordlund and Averback have reviewed the
calculation of point defect properties in metals [80]. Their ar-
ticle reports that the formation entropy of interstitials in FCC
metals can be as high as 15 kB. This translates to a lowering
of the interstitial formation energies of FCC metals by up to
1.42 eV at 1100 K. If we assume such entropy contributions
in bcc uranium, a similar lowering of the formation energies
of point defects can be expected.

IV. SUMMARY AND CONCLUSIONS

First-principles molecular dynamics simulations have been
carried out to calculate the thermodynamic properties of
bcc uranium with point defects. BCC uranium is a high-
temperature phase known as γ uranium. The simulations were
performed at 1100 K with canonical ensembles of U127M1,
U128M1, and U126M1�1 disposed on a bcc lattice lying within
a 4 × 4 × 4 cubic cell. This work provides the formation and
binding energies of different types of point defects, namely,
substitutional defects, self and solute interstitial dumbbell de-
fects, and M-� pair defects for M =�, He, Ne, Ar, Kr, Xe, Sr,
Zr, I, Cs, and Pu. Equilibrium volumes, bulk moduli, and ther-
mal expansion coefficients of bcc uranium with these point
defects are also reported. This work demonstrates that molec-
ular dynamics simulations give reliable equilibrium volumes,
formation energies, and binding energies of atomic defects in
bcc uranium compared to conventional DFT calculations. The
equilibrium volume, bulk modulus, and thermal expansion
coefficient of pure bcc uranium obtained from our computa-
tional scheme based on canonical ensemble MD simulations
compare very well with corresponding experimental results.
Our MD simulations predict a vacancy formation energy of
0.88 eV. The experimental vacancy formation energy of bcc
uranium remains uncertain. Experimental study of the forma-
tion and binding energies of other point defects is also not
found in the literature. This work shows that point defects tend
to decrease the bulk modulus and increase the thermal expan-
sion coefficient of bcc uranium. Experimental bulk modulus
and thermal expansion coefficients of bcc uranium with these
point defects are also absent from the literature.

The solute formation energies of noble gas atoms show a
relation to their size. A large solute (Xe) has a high formation
energy, and vice versa. This size effect is not quite evident
for other solutes, namely, Sr, Zr, I, Cs, and Pu. Since these
elements are chemically reactive, their formation energies in
uranium appear to be influenced by both size and chemistry.
Our MD simulations further show that vacancies are favorable
point defects in bcc uranium rather than both vacancies and
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self interstitials as predicted by earlier calculations. This work
also shows that self interstitial atom formation energies are
lower than those of solute interstitial atoms, both calculated in
six different basic interstitial dumbbell configurations. That
is, bcc U accommodates self interstitials more easily than
decay or fission gas interstitials (He, Kr, or Xe). Further, He
atoms have comparable formation energies in substitutional
and interstitial configurations. The fission product atoms Kr
and Xe prefer to occupy vacant substitutional lattice sites
rather than interstitial sites. The binding energies of divacancy
and solute-vacancy pairs (0.31 vs −0.69 eV for the Xe-�
pair, for instance) from our MD simulation show that nucle-

ation and growth of fission gas bubbles are supported by a
thermodynamic driving force, whereas vacancies tend to stay
separated. This is in agreement with literature reporting that
bcc uranium softens and swells mainly by agglomeration of
noble gas bubbles.
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